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In the field of differential equations, the r-method introduced by C. Lanclos has
generated considerable interest because of its novel philosophy. That is, rather than
attempting to solve an exact equation approximately, it solves an approximate
equation exactly. The r-method when applied to differential equations has many
striking properties. In this paper, the concept is applied to difference equations. For
a model we use the equation satisfied by the reciprocal of the gamma function,
l/T(z + 1). As a consequence of the analysis, we show how to generate the Taylor
series coefficients in the expansion of this function about z = O. In particular, a
novel technique is provided to compute Euler's constant.

I. INTRODUCTION

The r-method, due to C. Lanczos, was originally devised to obtain
polynomial approximations to the solutions of ordinary linear homogeneous
differential equations; see Refs. [1,2], or the volume by Luke [3], which
contains a survey of recent developments and many examples.

The r-method has generated much interest because of its novel philosophy:
rather than attempting to solve an exact equation approximately, it solves an
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approximate equation exactly. Let the original differential equation be

L[h(z)] = 0, O~j~r-l, (1)

where r is the order of L and where the origin is a regular point of the
equation. In its most naive formulation the r-method takes as an approx­
imate equation

(2)

where P" is a given polynomial of degree n, a*-O a given range parameter
and r a constant to be determined. If the r-method in this formulation works,
hn(z) will be a polynomial of degree n, a solution of the approximate
equation which also satisfies the initial conditions for the initial problem.
Depending on the problem, it may be necessary to add other r-terms, e.g.,

r

L rJPn+/z/a)
j=O

(3)

the number of these being dictated by the requirement that the linear
equations for the determination of the coefficients of hn(z) be consistent.

One very useful property of the method is that the error hn(z) - h(z),
satisfies the non-homogeneous equation (2). In many important cases the
error can be analyzed by applying the method of variation of parameters to
this equation.

Generally, the polynomials Pn are chosen to be interpolatory in the range
[0, I] and a is chosen so that [0, a] is the largest interval over which the
approximation is required. Often Pn is taken to be the Jacobi polynomial
p~",.I3) shifted to [0, I J.

All in all, the application of the r-method to differential equations is rather
straightforward. The existence and uniqueness of polynomial solutions is
easily assured, even polynomial solutions having prescribed initial data.
Often convergence as n ~ 00 can be shown.

Instead of solving (2), we could seek a polynomial solution of this same
equation with rPn(z/a) replaced by a single power of z, say zn. This idea goes
back to Lanczos [I], and was subsequently studied by Ortiz [4]. The
solution is called a canonical polynomial. Then the solution to (2) with
appropriate linear initial conditions is a particular combination of the
canonical polynomials. The scheme can be advantageous since the canonical
polynomials used to obtain the solution of (2) are available to obtain the
solution of (2) with n replaced by n + 1.

Since several important higher transcendental functions satisfy difference
rather than differential equations, we sought to extend the application of the
r-method to these kinds of equations. We encountered problems immediately.
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For instance, there is no theory guaranteeing polynomial solutions of the
related approximate equation. In fact, in the example treated in this paper,
the functions satisfying the approximate equation are meromorphic, with
simple poles, some in the range where the approximation is to hold.
Fortunately (and we are not certain whether this is simply a characteristic of
our example) it is possible to choose the rj so the residues of the solution are
zero, and further, to restrict the growth of the solution. The effect of this
construction is to yield a polynomial solution.

The body of our paper consists of a single example, the equation for the
reciprocal of the gamma function 1/r(z + 1) and numerics. Many of the
peculiarities of this example, we feel, will apply to other difference equations
and point the way for future investigations.

II. THE r-METHOD

Consider the difference equation

(z+ l)h(z+ l)-h(z)=O

which is satisfied by

h z _ C(z)
( ) - r(z + 1) ,

(4)

(5)

where r(z) is the gamma function and C(z) is an arbitrary periodic function
with period 1. We take C(z) = 1. The reciprocal of the gamma function is
entire so we have the series representation

1 00

h(z) = = ')' hkz\
r(z + 1) k.......O

hO = 1,lzl < 00. (6)

The coefficients hk , k = 1(1) 29 to 20d are available in the volumes by Luke
[3,5].

In the spirit of the r-method, we shall study the difference equation

(z + 1) hn(z + 1) - hn(z) = rlAnR~,,·(jl(z/a)

+ r2An+lR~"+~\z/a), 0 <z/a <. 1,

AnR~,,·(j)(x) = AnP~,,·(j)(2x - I)

_ ~ (-)\Z)(n+A)k xk

- f::o (fJ+ 1h
(-Yn!

An = (/J + l)n ' A = a + fJ + 1.

640/32/3-4

(7)

(8)
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We look for a solution of (7) in the form

n

hn(z) = I hn.kzk,
k=O

hn•o = 1. (9)

Note from (4) and (7) that en(z) = hiz) - h(z) also satisfies (7).
Because of the additive property of particular solutions of (7), if we can

determine a solution of

(z+ l)g(z+ 1)-g(z)=zk, k = 0,1,2,..., (10)

then a particular solution of (4) readily follows. This approach is analogous
to the canonical polynomial scheme of Lanczos for differential equations.
Let

Then

g(z) = ({J(z)jF(z + 1). (11 )

(12)

One might hope to solve this equation by applying the Norlund sum
operator, but the Norlund sum of the function on the right-hand side does
not converge. To get around this, replace z by -z and take (}(z + 1) = ({J(-z).
Then

(}(z + 1) - (}(z) = -F(1 - Z)(-Z)k. (13)

The Norlund sum of the function on the right now converges. We have for a
particular solution

00

(}(z) = I F(1 - z - j)(-z - j)k,
j=O

Thus a particular solution of (10) is

z *- 0, ±1, ±2,....

z *- 0,1,2,....

(14)

(15)

It is easy to see from (15) that Po(z) is a meromorphic function whose
only singularities are simple poles at z = 0,1,2,.... Also P1(z) = 1. If k > 1,
Piz) has the same singular behavior as Po(z) and except for the singular
part, Piz) as we shall show, is a polynomial in z of degree (k - 1). Thus we
can write
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Pk(z) = I: dk.m + Qk(Z),
m=O Z - m
k-l

Qk(Z) = I qk.m Zm ,
m=O

215

(16)

for all m.

Then

dk,m = Residue Pk(z) = lim (z - m) Pk(z)
z~m

= lim ~ (-Y(z - 1 - j)k
z~m /:"0 (-z)(I-z) ... (m+I+z)(m+I-z)(m+2-z)· .. (j-z) (17)

= Skim!

Sk=(_)kI: (_Y(~,+I)k, So=e-I,SI=O.
j=O J.

Define

Taking the limit directly in (15) gives

(19)

where l/I(z) is the logarithmic derivative of the gamma function.
Comparing (18) and (19) and using some results in Luke [3, Vol. 1,

p. 222, Eqs. (15) and (18)], we find that qo = 0 and to 15d,

Uo = -e-1[Ei(I) - y] =-0.4848829106995688. (20)

Here y is the Euler-Mascheroni constant. The numerical result in (20) is
readily deduced from known tables. Since qo = 0, from (18),

(21 )

It will be necessary to compute Sk and qk for 1 ~ k ~ n + 1. Obviously use
of either (17) or (19) is not a satisfactory way of doing this especially for k
large because of round ofT error.

We now develop some properties of Pk(z) which will be useful and will
also lead to more reasonable representations for Qk(Z), Sk and qk including
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recurrence formulas. The results can be summarized by the following
theorem.

THEOREM 1. Thefunctions Pk(z) satisfy the recurrence formula

k-I (k )
Pk+1(Z) = (z - l)k + (_)k ~o (-y r Pr(z),

PI (z) = 1, k = 1,2,... . (22)

Further

k ~ 1,
k-I ( k )

Sk+ I = (_)k 2.:: (-Y S"
r=O r

k-l ( k)
qk+ I = (_)k + (_)k ~I (-Y r qr'

qo = 0, ql = 1, k = 2, 3,....

(23)

(24)

Note. The formulae (22)-(24) are valid for k = 0, °and 1, respectively,
provided the empty sum L:;~ I is treated as zero. Also if we let S k = e- ISk'

then the Sk'S are integers, and for example,

So = 1, Sl = 0, S2 = -1,

S3 = 1, S4 = 2, S5 = -S6 = -9.
(25)

Proof. Replace k by r in (15), multiply by {( ~) and sum from r =°to
r= k. Then

k ( k) k ( k) CXJ (_)H I(Z + 1 _ jY2.:: t' Pr(z) = 2.:: t' 2.:: ....:........:---..,--..:..-:------=--,-
r=O r r=O r j=O (-Z)j+1

But

t tr ( k ) (z - 1 - jY = [1 + t(z - 1 - j)1\
r=O r

and so

(26)
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00 (_)j+l
Pk(Z)+Pk+l(Z)=j~O (-Z)j+l {(z-l-j/+(z-l-j)k+

1
1

= V (-)j(z-l-j)k

/;;'0 (-z)j

oo~ (_)j+l(z_2_j)k
=(z-I/+L (27)

j~O (-z)j+ I

Combining this with (25) for t = -1 gives the statement (22). Equation (23)
follows from (17) and (24) emerges when the limit process in (18) is applied
to (22) and account is taken of (21) and (23). I

We now have the machinery to establish (16) and some related results.

THEOREM 2. (a) Po(z) is a meromorphic function whose only
singularities are simple poles at Z =°and the positive integers

(b) P1(z) = 1.

(c) Pk(z) has the same singular behavior as Po(z), k> 1.

(d) Except for the singular part, Pk(z) is a polynomial in Z of degree
k - 1, call it Qk(Z) (see (16)),

(28)

(30)

(e) Qk(Z) satisfies the recursion formula

Qk+l(Z) = (z - 1/ + (_)k ~~ (-y ( ~) Qr(z),

Qo(z) = 0, Ql(Z) = 1, k = 1,2,.... (29)

Proof Parts (a) and (b) are easily verified from (15). Items (c) and (d)
follow by induction using (22). Equations (28) and (29) also follow by
induction using (22) and (23). I

It is interesting that the recursion formula naturally gives Qk(Z) as a
polynomial in (z - 1) of degree k - 1. We have

Q2(Z) = (z - 1), Q3(Z) = (z - 1)2 - 2 = Z2 - 2z - 1,

Q4(z)=(z-I)3-3(z-I)+3=z3-3z2+5,

Qs(z) = (z - It - 4(z - 1)2 + 6(z - 1) +4
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Q6(Z) = (Z - 1)5 - 5(z - 1)3 + lO(z - 1)2 + 5(z - 1) - 30

= Z5 - 5z4 + 5z 3 + 15z2
- 25z - 21.

The "canonical" polynomials Qk(Z) also satisfy the z difference equation

(31 )

The following theorem gives an estimate for Pk(z).

THEOREM 3. Let Np(a) denote the open ball in C with center a, radius p
andfor a fixed 15,0 < 15 <!, let Dh = C - U~O Nh(k). Then

(32)

Proof By virtue of (22), we need only show this for Po(z). Po(z) may be
expressed in terms of the confluent hypergeometric function.

zPo(z) = 1 + (z _1)-1 K(z),

K(z) = ,F,(I; 2 - z; -1) = e-',Ft(I - z; 2 - z; 1) (33)

--'f( I-Z)~
- e j~O 1 - z +j j!'

the latter following from Kummer's transformation formula. Now (1 - z)/
(1 - z +j) = 1 - j/(I - z +j) and so

K(z)=e- I le-j~ [U+ 2 - z )j!j-'!.

Since Ij + 2 - zl ~ 15 in Dh , we have

(34)

and using this in the first line of (33) gives the required result. I
We now return to the original difference equation (7). Using (10) and

(15), we have

n n+1

hn(z) = T, L Wn.kPk(z) + T 2 L wn+ ',kPk(Z),
k=O k=O

).. = a +fJ + 1,

(35)

which is meromorphic with simple poles at z = 0, 1, 2,... and is O(zn) in Dh.
We want to impose two conditions on hiz): first, that it is a polynomial of
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degree not greater than n and second, hnC0) = l. Put (28) in (35) and note
(16). Then these conditions translate to give equations

n n+ I

T 1 L Wn,kSk +Tz L wn+l,kSk = 0,
k=O k=O

n n+1
T1 L wn,kqk+TZ L Wn+I,kqk=l.

k=O k=O

We can then write

n n + 1

hnCz) = TI L Wn,kQk(Z) + Tz L Wn+l.kQk(Z)'
k=O k=O

(36)

(37)

We summarize the facts concerning the derivation of (36) and (37) as an
existence and uniqueness

THEOREM 4. Let a> -1, fJ> -I, n ~°and (J be given. Let the deter­
minant of the system (36) be non-zero. Then there exist unique constants TI
and Tz' and a unique polynomial hn(z) of degree not exceeding n with
hn(O) = I satisfying (7). If Tz 1= 0, the degree of hn(z) is exactly n.

The coefficients hn.k in hn(z) (see (9)) can be obtained from (37) with the
aid of (29) and (30). This procedure can be avoided by use of a recursion
formula for hn•k • Put (9) in (7) and equate like powers of z. Then

n

L
r=k-I

k = n, n - I, ... , I, hn,n = Tzwn+I,n+ I' (38)

The latter is fascinating for it suggests another way of computing hn,k which
avoids use of the Sk'S and the qk'S. The procedure which is much akin to the
J. C. P. Miller algorithm for solutions of linear recurrence equations is as
follows. Compute fn,k and gn,k by recursion using

n (r+l)fn,k-I = Wn,k - kfn,k - L k fn,r'
r=k+ I

n (r+l)gn,k-I = wn+I,k - kgn,k - L k gn,r'
r=k+1

fn,n = 0,

k = n - 1, n - 2,... ,1,
(39)
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(40)

and the coefficients are completely determined once we know r 1 and r2 •

Since hn(O) = 1,

(41 )

To obtain a second relation involving r l and r 2 , combine (7) and (9) with
z = 0 and use (40). Then

r t (1- i fn.k) +r2 (1- ±gn'k) =0.
k=l k=l

III. NUMERICS FOR THE r-METHOD

(42)

In this section we present some numerics to illustrate computation of the
approximations for [r(z + l)t 1 based on the scheme (39}-(42). In all the
exhibited calculations, a = fJ = - t or a = fJ = 0, and (J = 1. The following
table relates the machine notation with that of this paper.

Notation

qn,k' where
q = w,f, g or h

Q(N, K) where
Q =W,F, G,or H
TAUl, TAU2

Z
HN(Z)

Computations were done for n = 2(1) 15. The printouts for n = 5 and 10
with a = fJ = - t are given in Table I.

Coefficients in the Taylor series expansion of I/r(z + 1) about z = 0 will
be found in either of the volumes by Luke [3,51. Clearly the series converges
for all z. Let 0 ~ z ~ 1. If l/r(z + 1) = Lf=o hkzk is approximated by the
sum of the first (n + 1) terms, then the magnitude of the error is bounded by
En = Lf=n+ 1 Ihkl· Values for En for n = 2(1) 15 are given in Table II. For
the same n, we also give the magnitude of the maximum errors obtained by
the r-method for 0 ~ z ~ 1 based on the errors for z = 0, 1/4, 1/3, 1/2, 2/3,
3/4, 1 (see Table I, for example). These data are notated as F n and are
presented in Table II for a = fJ = - t and a = fJ = O. We have not been able



The r-Method Solutions for n = 5 and 10

SOLUTION OF A DIFFERENCE EQUATION

N= 5 SIGMA:1. AlPt~=-O.50 BETA=-D.50

W(N,K) W(N+ 1, K) F (N, K' GiN.K) H(~.K)

0 ----- ----- 0.9630000000000000 04 0.2494400000000000 05 0.100000000000000D 01
, -0.5000000000000000 02 -0.7200000000000000 02 -0.2480000000000000 04 -0.'046320000000000 06 0.5B35240580092390 00
2 0.4000000000000000 03 0.8400000000000000 03 -0.5984000000000000 04 -0.5888000000000000 04 -0.7037083'311 972·30 00
3 -0.11 2000000000000:J 04 -0.3584000 OOOOOOOOD 04 0.3328000000000000 04 0.4172800000000000 05 0.620533272782439D-0'
4 0.1280000000000000 04 0.6912000000000000 04 -0.5'20000000000000 03 -0.1638400000000000 05 O.757874141237157D-01
5 -0.5120000000000000 03 -0.6,.4000000000000 04 0.0 O. :20480000000000)0 04 -0. 175390203662418D-0 1
6 ----- 0.2048000000000000 04

0 ----- ----- 0.336891'964000000 10 0.,038642503980000 12 0.'000000000000000 0'
, -0.2000000000000000 03 -0.2420000000000000 03 0.4369778120000000 10 0.2852898'92000000 '0 0.5772133365690680 00
2 0.6600000000000000 04 0.9680000000000000 04 -0.2440992000000000 , 0 -0.6267486641600000 11 -0.6556814125953' 10 00
3 -0.8448000000000000 05 -0.1510080000000000 06 -0.934151936000000009 0.1430469196800000 11 -0.419747251923968D-01
4 0.5491200000000000 06 0.120606400000000007 0.6426782720000000 09 0.1065511967200000 11 0.1664746635285<2000
5 -0.2050048000000000 07 -0.5637632000000000 07 -0.8774656000000000 08 -0.5616877568000000 10 -0.419407157830588D-01
6 0.465920000000000D 07 0.'64003840000000008 -0.90"20000000000006 0.2284257280000000 09 -0.'033493536758650-01
7 -0.6553600000000000 07 -0.3063808000000000 08 0.4069785600000000 08 0.5568593920000000 09 0.827074110978213D-02
8 0.5570S60000000000 07 0.3676569GOOOOOOOO 06 -0.7340032000000000 07 -0.2046033920000000 09 -0.2060340519433200-02
9 -0.2621440000000000 07 -0.273940480000000D 08 0.5242880000000000 06 0.3250585600000000 08 O. 2448368430512':;;~2D-03

10 0.5242860000000000 06 0.1,53433GOOOOOOOO 06 0.0 -0.2097152000000000 07 -0.114 ..845867856850-04

" ----- -0.2097'52000000000 07

TAU1= 0.1285280867445000-09 TAU2. 0.5459050502104040-11

HNlZ) 1/GAMMA(1+Z) ERROR
0.0 0.,00000000000000D 01 0.1000000000000000 01 0.0
0.2500000000000000 00 0.110326217581123001 0.11032G265132084D 01 O.475~09602004181Q-06

0.3333333333333330 00 0."'9B46063~0752o 01 U.1119846521722'9U 01 0.4570146690636940-06
0.5000000000000000 00 0.1128379044200440 01 0.1128379167095510 01 0.1228950723408670-06
0.6660666666666670 00 0."07732439002700 0, 0.1107732'67432470 01 -0.271570~28971285D-06

0.7500000000000000 00 0.t088065602S1seso 01 O.108806525213102D 01 -0.3503878365229700-06
0.1000000000000000 0, 0.1000000000'3399D 0, 0.1000000000000000 01 -0.'339863775484670-09

HNIZ) I/GAMMA('OZ) ERROR
0.0 0.'000000000000000 0' 0.'000000000000000 0' 0.0
0.2500000000000000 00 0."03'47744495390 0, 0."0326265'320840 0' 0.1'49068254442330-03
0.3333333333333330 00 O."194799476~2CBO 01 0.111964652172219001 0.366574080'090940-03
0.5000000000000000 00 0.' '27780234380750 0, 0.1128379'67095510 01 0,5969327'47593040-03
0.6666666666666670 00 0.1'07303645394310 01 0.1107732167432470 0' 0.4285220381612330-03
0.7500000000000000 00 0.1087803381763100 01 0.1068065252'3'020 0, 0.2618703679140300-03
0.'000000000000000 01 0.10001174609252:20 01 0.1000000000000000 0' -0.1174609252236890-03

SOLUTION OF A DIFFERENCE EQUATION

N.l0 SIGMA.l. ALPH.-0.50 6ETA.-0.50

IV
IV

"::r;"I'l
ttl
:;c
ttl
Z
(j
ttl
ttl
,0
c:::
>..,
o
Z
ell

>
Z

"..,::t:
ttl
'"i

~
ttl..,
::t:
o

"

H (N. K)G( N, K)F (N. K)WINo 1. K)

TAU2. -0.8563974788203990-05

Wi N,K)

TAU" 0.'20024900012'45D-03
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TABLE II

Comparison of Errors in the Taylor Series with the r-Method

Tay\or Series r-Method r-Method r-Method
n En Fn, a =/3 = - t Fn,a=/3=O E*n

2 0.259 0.109 0.\23 0.951(-2)
3 0.2\8 0.489(-2) 0.5\3(-2) 0.344(-2)
4 0.605(-\) 0.28\(-2) 0.369(-2) 0.997(-3)
5 0.\83(-\) 0.599(-3) 0.40\(-3) 0.227(-3)
6 0.875(-2) 0.562(-4) 0.5\3(-4) 0.723(-4)
7 0.\53(-2) 0.405(-4) 0.397(-4) 0.504(-4)
8 0.366(-3) 0.\1 7(-4) 0.\15(-4) 0.580(-5)
9 0.\5\(-3) 0.\82(-5) 0.\78(-5) 0.264(-5)

10 0.227(-4) 0.350(-6) 0.465(-6) 0.889(-6)
\\ 0.27\(-5) 0.433(-6) 0.426(-6) 0.357(-6)
\2 0.\46(-5) 0.\06(-6) 0.\05(-6) 0.555(-7)
\3 0.2\8(-6) 0.\45(-7) 0.\70(-7) 0.635(-7)
\4 0.\24(-7) 0.\48(-7) 0.\46(-7) 0.\46(-7)
\5 0.630(-8) 0.447(-8) 0.443(-8) 0.\44(-8)

to prove that for fixed z and 0 <z/a ~ 1, the sequence hn(z) ~ [F(z + 1)I-I
as n~ 00. However, the computations offer heuristic evidence that this is so.
Also for the n values recorded, Fn <En and so overall in the range
o~ z ~ 1, the r-method gives a better approximation. Notice that the
differences in F n for a = f3 = -! and a = f3 = 0 are very slight.

As will be shown in the next section, if a ~ 0, we get an equation like (7),
where the right-hand side is replaced by ulz

n + U2 Z
n + l

• Further with n ---+ 00,

this leads to a scheme to obtain the Taylor series coefficients in the
expansion of 1/F(z + 1) about z = 0. Suppose that E~ is the magnitude of
the maximum error in this polynomial approximation to 1/F(z + 1) for
o~ z ~ 1 based on the errors for the same z values used above. These data
are also recorded in Table II. For all the 14 n-values recorded, E~ is less
than Fn (a = f3 = - Dten times. Further E~ <En for all n except n = 14.

IV. A MILLER ALGORITHM FOR THE COMPUTATION OF THE

DERIVATIVES OF [F(z + 1)1- 1
AT z = °

When a ---+ 0, the algorithm described by (36) and (37) yields a method of
computing the reduced derivatives

(43)
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by taking a limit as n ~ 00. From (36)

223

(J~ 0,

(J ~ 0, (44)

So as (J ~ 0, (7) becomes

(z + 1) hn(z + 1) - hn(z) = !IZn + !2 Zn + 1.

Hence from our previous work,

where un is given in (44). We conjecture that

(45)

(47)

(48)

where hk and qn.k are defined in (6) and (16), respectively.
Recall that in place of the developments surrounding (35) and (37), we

could determine the desired approximation by use of the schema given by
Eqs. (39)-(42). The same idea can be used to evaluate hn •k • We have

___ \' (r+l)
In,k-l - kfn.k L... k In.r'

r=k+1

I n•n = 0, fn.n-I = 1,

gn.n-I = -no

k=n-l,n-2,...,I,
(49)

Then for iii and li2 satisfying,

we have

(50)

n~ 00. (51 )
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TABLE III

Approximations for the Coefficients in the Taylor Series for Ijr(z + 1)

N= 10

SOLUTION OF A DIFFERENCE EQUATION

F( N, K) GIN,K) HlN,K)

0 0,5513000000000000 04 -0.1320900000000000 05 0.100000000000000D 01
1 0.6000000000000000 02 0.1777000000000000 05 O. 577220490530B' 2 D 00
2 -0.3318000000000000 04 0.6241000000000000 04 -0.6558745094636050 00
3 0.7890000000000000 03 -0.7747000000000000 04 -0.4203734174023810-01
4 0.5550000000000000 03 0.7530000000000000 03 0.166517021593514000
5 -0.3000000000000000 03 0.1108000000000000 04 -0.42\ 121582342600D-Ol
6 0.150000000000000D 02 -0.4250000000000000 03 -0.9579165124788010-02
7 0.2700000000000000 02 0.5000000000000000 01 O.710077993475868D-02
8 -0.900000000000000D 01 0.3500000000000000 02 -0.120772297066351 D-02
9 0.100000000000000D 01 -0.100000000000000D 02 -0.5900917119117450-04

10 0.0 0.100000000000000D 01 0.316146456615287D-04

MUI = 0.2571372854241 \ 3D-03 MU2= 0.316146456615287D-04

0.0
0.2500000000000000 00
0.3333333333333330 00
0.5000000000000000 00
0.6666666666666670 00
0.7500000000000000 00
0,1000000000000000 01

HNll)
0.100000000000000D 01
0.1103263540398120 0\
0.'119847330864120 01
0.1128379257428450 01
0.1107731499521690 01
0.1088064461666150 01
0.1000000000000000 01

I/GAMMA( l+l)
0.1000000000000000 01
0,110326265 I 32084D 01
0.111984652172219D 01
0.112837916709551D 01
0.110773216743247D 01
0.108806525213102D 01
0.1000000000000000 01

ERROR
0.3409446951953610- i 5

-0.889077282018036D-06
-0.80914\ 9365641170-06
-0.9033293668636590-07

0.6679 \ 07806828450-06
0,7904448653395240-06
0.5134 78148889135D-l 5

SOLUTION OF A DIFFERENCE EQUATION

N=15

F (N, K) GIN, K) HIN.K)

0.4151100000000000 05 0.705612850000000D 08 0.100000000000000D 01
-0.\421025800000000 08 0.531015000000000D 08 0.577215657084541 D 00

0.\33069\000000000 07 -0.4745990500000000 08 -0.655878074400793D 00
0.4651651000000000 07 -0.7008499000000000 07 -0.4200257752274980-01

4 -0.ld48006000000000 07 0.1318990800000000 08 O. 166~3n6349328320 00
5 -0.310459000000000D 06 -0.2709207000000000 07 -0.4219787439756380-01
6 0.3094050000000000 06 -0.9482250000000000 06 -0.9622020910041300-02
7 -0.55846000000000CD 05 0.558 1940000000000 06 0.72 \ 911868204537D-02
8 -0. , 14030 oaooao ooeD 05 -0.7234300000000000 05 -0.116512162674102D-02
9 0.7119000000000000 0" -0.2139300000000000 05 -0.215378372983392 D-03

10 -0.112000000000000D 04 0.100120000000000D 05 0.128028755455139D-03
11 -0. 105000000000 OOOD 03 -0.132500000000000D 04 -0.2006" 772788724 D-04
12 0.770000000000000D 02 -0.155000000000000D 03 -0.124 '75' 66 7024987D-05
13 -0.140000000000000D 02 0.900000000000000D 02 0.110246551660549D-05
14 O. 1000000000000000 C1 -0.1500000000000000 02 -0.2001604025578790-06
15 0.0 0.1000000000000000 01 0.1416483432670680-07

MU1= 0.123121123427231D-07 MU2= 0.1416483432670680-07

0.0
0.2500000000000000 00
0.3333333333333330 00
0.5000000000000000 00
0.666666666666667 D 00
0.7500000000000000 00
O. 1000000000000000 01

HNll)
0.100000000000000001
0.110326265003943001
0.1119846520654350 01
O.112837916728166D 01
O.110773216B763CaD 01
0.1088065253574460 01
0.999999999999999D 00

1 /C,AMr-.'A ( 1 +Z)
0.1000000000DOOOOD 01
0.110326265132084D 01
0.1119845521722190 Dl
0.11283B167095510 01
0.110773216743247001
0.108806525213102D 01
0.100000000000000D 01

ERROR
0.2775557561562890- \ 6
0.1281410311193550-08
D. 10678318229651 00-08

-0.1851464316021970-09
-0.1330530796650460-08
-0.1443438035764190-08

0.1054711973393900-14

V. NUMERICAL EVALUATION OF THE COEFFICIENTS IN THE

TAYLOR SERIES EXPANSION OF [r(Z+ 1)]-1 ABOUT z=O

In this section we illustrate computation of the coefficients hn,k according
to the prescription (49)-(51). The relation between the notation in the latter
equations and the machine printouts is as follows.
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n

'\' h k
L.. n,k Z

k=O

Machine

F(N, K), G(N, K)
H(N,K)

Z

HN(Z)

Machine calculations were done for n = 2( 1) 40. The data for n = 10 and
15 are recorded in Table III, and we deduce that the coefficients hn •k are
correct to at least 3 and 6 decimal places, respectively. For n = 20 and 30,
the values of hn ,k are correct to at least 8 and 13 decimal places, respec­
tively. The quantity hI is y, the Euler or Euler-Mascheroni constant. Let
Yn = hn,l be the approximation to y. The values obtained for Yn' n = 5(5) 35
are given in Table IV. The value given there for n = 00 is Y to 15 decimal
places. Note that the difference of Yn for n = 30 and 35 from the true Y is no
doubt due to round off. Thus on a heuristic basis, we have an alternative
scheme to obtain the Taylor series coefficients and in particular Euler's
constant,

TABLE IV

Approximations for Euler's Constant

n Yn

5 0.57692 30769 23077
10 0.57722 04905 30812
15 0.57721 56570 84541
20 0.57721 56649 92483
25 0.57721 56649 00408
30 0.57721 56649 01537
35 0.57721 56649 01535
OC) 0.57721 56649 01533
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