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In the field of differential equations, the r-method introduced by C. Lanczos has
generated considerable interest because of its novel philosophy. That is, rather than
attempting to solve an exact equation approximately, it solves an approximate
equation exactly. The r-method when applied to differential equations has many
striking properties. In this paper, the concept is applied to difference equations. For
a model we use the equation satisfied by the reciprocal of the gamma function,
1/I(z + 1). As a consequence of the analysis, we show how to generate the Taylor
series coefficients in the expansion of this function about z =0. In particular, a
novel technique is provided to compute Euler’s constant.

I. INTRODUCTION

The 7-method, due to C. Lanczos, was originally devised to obtain
polynomial approximations to the solutions of ordinary linear homogeneous
differential equations; see Refs. [1,2], or the volume by Luke {3], which
contains a survey of recent developments and many examples.

The r-method has generated much interest because of its novel philosophy:
rather than attempting to solve an exact equation approximately, it solves an
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approximate equation exactly. Let the original differential equation be
Llh(z)]=0, ArY0)=c;, 0<Lji<r—1, (1)

where r is the order of L and where the origin is a regular point of the
equation. In its most naive formulation the r-method takes as an approx-
imate equation

Lih,(2)] = 1p.(z/0), )

where p, is a given polynomial of degree n, 0 # 0 a given range parameter
and 7 a constant to be determined. If the z-method in this formulation works,
h.(z) will be a polynomial of degree n, a solution of the approximate
equation which also satisfies the initial conditions for the initial problem.
Depending on the problem, it may be necessary to add other r-terms, e.g.,

r

Z ﬁpn+f(z/0) Q)

Jj=0

the number of these being dictated by the requirement that the linear
equations for the determination of the coefficients of 4,(z) be consistent.

One very useful property of the method is that the error A,(z) — h(z),
satisfies the non-homogeneous equation (2). In many important cases the
error can be analyzed by applying the method of variation of parameters to
this equation.

Generally, the polynomials p, are chosen to be interpolatory in the range
[0, 1] and o is chosen so that [0, 0] is the largest interval over which the
approximation is required. Often p, is taken to be the Jacobi polynomial
PP shifted to [0, 1].

All in all, the application of the r-method to differential equations is rather
straightforward. The existence and uniqueness of polynomial solutions is
easily assured, even polynomial solutions having prescribed initial data.
Often convergence as n — oo can be shown.

Instead of solving (2), we could seek a polynomial solution of this same
equation with p,(z/0) replaced by a single power of z, say z". This idea goes
back to Lanczos [1]|, and was subsequently studied by Ortiz {4]. The
solution is called a canonical polynomial. Then the solution to (2) with
appropriate linear initial conditions is a particular combination of the
canonical polynomials. The scheme can be advantageous since the canonical
polynomials used to obtain the solution of (2) are available to obtain the
solution of (2) with n replaced by »n + 1.

Since several important higher transcendental functions satisfy difference
rather than differential equations, we sought to extend the application of the
7-method to these kinds of equations. We encountered problems immediately.
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For instance, there is no theory guaranteeing polynomial solutions of the
related approximate equation. In fact, in the example treated in this paper,
the functions satisfying the approximate equation are meromorphic, with
simple poles, some in the range where the approximation is to hold.
Fortunately (and we are not certain whether this is simply a characteristic of
our example) it is possible to choose the 7; so the residues of the solution are
zero, and further, to restrict the growth of the solution. The effect of this
construction is to yield a polynomial solution.

The body of our paper consists of a single example, the equation for the
reciprocal of the gamma function 1/I(z + 1) and numerics. Many of the
peculiarities of this example, we feel, will apply to other difference equations
and point the way for future investigations.

II. THE t-METHOD

Consider the difference equation

(z+ 1)h(z+1)—h(z)=0 (4)
which is satisfied by
. C(2)
h(Z) = r—(;:'—lj , (5)

where I'(z) is the gamma function and C(z) is an arbitrary periodic function
with period 1. We take C(z) = 1. The reciprocal of the gamma function is
entire so we have the series representation

=Y .z hy=1,|z] < 0. 6)

1
"=t &

The coefficients h,, k = 1(1) 29 to 20d are available in the volumes by Luke
(3,5].
In the spirit of the r-method, we shall study the difference equation

(z+ Dh(z+1)—h(z)=1,4,RP(z/0)
+ 17,4 n+1R§z‘¢?)(Z/U) 0<z/o<1

AR (x)=4,P*P2x— 1) @)
_ v Y@+
o B+
Y !
A":'((Y}?)LIL).’ A=a+B+1. (8)

640/32/3-4
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We look for a solution of (7) in the form

hn(z) = Z hn,kzk’ hn.o =1 (9)
k=0

Note from (4) and (7) that ¢,(z) = A,(z) — h(z) also satisfies (7).
Because of the additive property of particular solutions of (7), if we can
determine a solution of

z+Dgz+1)—gz)=2 k=0,1,2,., (10)

then a particular solution of (4) readily follows. This approach is analogous
to the canonical polynomial scheme of Lanczos for differential equations.
Let

g(z)=o(z)/I(z + 1). (11)
Then

oz + 1) = p(z2) =2I(z + 1). (12)

One might hope to solve this equation by applying the Norlund sum
operator, but the Norlund sum of the function on the right-hand side does
not converge. To get around this, replace z by —z and take 8(z + 1) = ¢(—z).
Then

8(z + 1) — 6(z) = —I(1 — 2)(—2)*. (13)

The Noérlund sum of the function on the right now converges. We have for a
particular solution

0(z) = i IQ—z—jz—j% z#0,x1,+2,... (14)

J
Thus a particular solution of (10) is

Y*ie—1-)"

,  z#0,1,2,.. (15)
(_z)j+1

YOS

It is easy to see from (15) that P,(z) is a meromorphic function whose
only singularities are simple poles at z =0, 1, 2,.... Also P,(z)=1.If k> 1,
P,(z) has the same singular behavior as Py(z) and except for the singular
part, P,(z) as we shall show, is a polynomial in z of degree (k — 1). Thus we
can write
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* d
P(z)= ZO . +Qk(z)
k-1
Ou(z)= Z_o Gr,mZ" G0 =4y (16)

00(2)=0,d, ,,=0  for all m.
Then

dy,»= Residue P,(z) = lim(z — m) P,(2)

 lim % (=Y(z—1-j)f
i 5 X)L -2 22)  G2) g
=Sk/m! ’
— (- V(—”(’—“)k, Sy=c',$, =0,
Define
. d
w=lin | POl =a-5 Y —s a=ae ()

Taking the limit directly in (15) gives

e S (YU + D k
4, = (=) ,};o( )’({+ ) [_j+1

Fu(i+ 1) - w(l)] . 9)

where w(z) is the logarithmic derivative of the gamma function.
Comparing (18) and (19) and using some results in Luke [3, Vol 1,
p. 222, Egs. (15) and (18)], we find that g, =0 and to 154,

u, = —e~'[Ei(1) — y] = —0.4848829106995688. (20)

Here y is the Euler—Mascheroni constant. The numerical result in (20) is
readily deduced from known tables. Since g, =0, from (18),

ukzqk+Skeu0- (21)

It will be necessary to compute S, and g, for 1 <k < n+ 1. Obviously use
of either (17) or (19) is not a satisfactory way of doing this especially for k
large because of round off error.

We now develop some properties of P,(z) which will be useful and will
also lead to more reasonable representations for Q,(z), S, and g, including
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recurrence formulas. The results can be summarized by the following
theorem.

THEOREM 1. The functions P,(z) satisfy the recurrence formula

Pi@=G- 1t +F X () P
P@)=lk=12um. (22)

Further
k:l k
Sei=CF S e (F)s. k>t (23)
r=0

ta=r o Y o (F)a

3,=0,9,=1k=2,3,... (24)

Note. The formulae (22)—(24) are valid for k=0, O and 1, respectively,
provided the empty sum > !, is treated as zero. Also if we let S, =e s,

then the s,’s are integers, and for example,

so=1,  §,=0, s=—1,
0 1 2 (25)
s;=1,  §,=2,  s,=—s,=—9.

Proof. Replace k by r in (15), multiply by ¢(¥) and sum from r =0 to
r=k. Then

= i=0 ('_z)j+1

But
2 t (’:)(z—l—j)’z [1+4tz—1-)]%
and so
Yt z—1-j+1/t)
(_Z)j+1 '

(26)

éot’ (f)P,(z):t"ji -
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Also from (15),

Pyz) + Prya(2) = J;} ((__z))j+1
-1

ji=0 (—2);

{e=1=jf+—1=)"

— (Z— l)k+ i (—)j+l(z_2_j)k .
i=0 (=2);4 4

27)

Combining this with (25) for 1 = —1 gives the statement (22). Equation (23)
foliows from (17) and (24) emerges when the limit process in (18) is applied
to (22) and account is taken of (21) and (23). 1

We now have the machinery to establish (16) and some related results.

THEOREM 2. (a) Py(z) is a meromorphic function whose only
singularities are simple poles at z =0 and the positive integers

(b) P(z)=1
(¢) P.(z) has the same singular behavior as Py(z), k > 1.

(d) Except for the singular part, P,(z) is a polynomial in z of degree
k—1, call it Q,(z) (see (16)),

P(2) = 8, Py(2)/So + Qu(2)- (28)

(e) Qu(2) satisfies the recursion formula

k—1
0@ == 1f 4+ X () 0
042)=0,0,(z)=1,k=1,2...  (29)

Progf. Parts (a) and (b) are easily verified from (15). Items (c) and (d)
follow by induction using (22). Equations (28) and (29) also follow by
induction using (22) and (23).

It is interesting that the recursion formula naturally gives Q,(z) as a
polynomial in (z — 1) of degree kK — 1. We have

Q@) =(¢—-1), Q@)=c-1)-2=7-2-1,
0.2)=0—-1)°=-3z-1)+3=2-322+5,
0u(5)=(z— 1 ~4(z — 1} +6(z— 1) +4

(30)
=z —422+ 222410z -5,
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Q(2)=(z—1°=5(z—- 1P +10(z—1)* + 5(z—1)—30
=z —5z* +52° + 152 — 25z — 21.
The “canonical” polynomials Q,(z) also satisfy the z difference equation
(z+ 1) Qu(z + 1) — Qu(2) = 2 — S5,/S,. (31)
The following theorem gives an estimate for P,(z).

THEOREM 3. Let N, (a) denote the open ball in C with center a, radius p
and for a fixed 6,0 < 6 < 3%, let Dy=C— U, Ns(k). Then

P(2)/z*"'=140(z""), z- 0 inD;,. (32)

Progf. By virtue of (22), we need only show this for Py(z). P,(z) may be
expressed in terms of the confluent hypergeometric function.

zPy(z) =1+ (z — 1) "' K(2),

K(z)=,F(1;2—z;-1)=e " F(1—2;2—2z;1) (33)
]
— 1
:e_l Z (_1_.2—)_,
S \l—z+j FL

the latter following from Kummer’s transformation formula. Now (1 —z)/
M=z+j)=1—j/(1 —z+j) and so

K(z)=e"

e= Y (u+2-021"].

=0
Since |j + 2 —z| > d in D;, we have
[K(2)|[<(14+67")  in Dy, (34)

and using this in the first line of (33) gives the required result. |

We now return to the original difference equation (7). Using (10) and
(15), we have

n+1

h(z)=1, > w,, Pi2) +1, D Wai 1k Pi2),
k=0 k=0

__(—)k(n>(n+’1)k
et Nk (B D

o
which is meromorphic with simple poles at z =0, 1, 2,... and is O(z") in D,.
We want to impose two conditions on h,(z): first, that it is a polynomial of

(33)

/1=a+ﬁ+1’
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degree not greater than n and second, £,(0) = 1. Put (28) in (35) and note
(16). Then these conditions translate to give equations

n n+1

T Y WS+ Z Wos1 k9% =0,
k=0 k=0
. ¢6)
7y l Woidx+ 7, Z Wo i =1
k=0 k=0
We can then write
n n+t
h.(2) =1, Z W Qul(2) + 1, Z W1, Q(2). (37)
k=0 k=0

We summarize the facts concerning the derivation of (36) and (37) as an
existence and uniqueness

THEOREM 4. Let a > —1, > —1, n >0 and o be given. Let the deter-
minant of the system (36) be non-zero. Then there exist unique constants 1,
and t,, and a unigque polynomial h,(z) of degree not exceeding n with
h,(0) = 1 satisfying (7). If t, # 0, the degree of h,(z) is exactly n.

The coefficients 4, , in A,(z) (see (9)) can be obtained from (37) with the
aid of (29) and (30). This procedure can be avoided by use of a recursion
formula for A, ,. Put (9) in (7) and equate like powers of z. Then

n
" r+1
l ( k hn,r—hn,kzlen,k+12wn+l,k’
r=k—1

k=nmn—1,, Lh, ,=T,W,, 1 01 (38)

The latter is fascinating for it suggests another way of computing 4, , which
avoids use of the S,’s and the g,’s. The procedure which is much akin to the
J. C. P. Miller algorithm for solutions of linear recurrence equations is as
foliows. Compute f, , and g, , by recursion using

" r+1
fn,k—l = wn.k_“kfn.k_ 2 ( )fn,r’

r=k+1 k

“ r+1
Gkt =Woirk—k&uk— > ( X )g,,_,, k=n—1,n—2,.,1,
r=k+1 (39)

fn,nzo’ fn.n—lzwn.n’

Enn=Wnitns1> 8nin—1=Waston = ®Whitner:
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Then

hn,k: Tlfn.k +TZ gn.k (40)

and the coefficients are completely determined once we know 7, and t,.
Since £,(0) =1,

Tlfn.0+r2gn,0: 1 (41)

To obtain a second relation involving 7, and 7,, combine (7) and (9) with
z =10 and use (40). Then

. (1 =3 fu) 4 (1— N g) ~0. (42)
k=1

k=1

III. NUMERICS FOR THE 7-METHOD

In this section we present some numerics to illustrate computation of the
approximations for [I'(z + 1)] ' based on the scheme (39)-(42). In all the
exhibited calculations, a=f=—4% or a=f=0, and o= 1. The following
table relates the machine notation with that of this paper.

Notation
g, > Where Q(N, K) where
g=w,f,gorh Q=W,F,G,orH
T Ty TAUI1, TAU2
z Z
h(z) HN(Z)

Computations were done for n = 2(1) 15. The printouts for =15 and 10
with & == — 1 are given in Table L.

Coefficients in the Taylor series expansion of 1/I'(z + 1) about z =0 will
be found in either of the volumes by Luke [3, 5]. Clearly the series converges
for all z. Let 0z 1. If 1/I(z4+ 1) =Y , h,z* is approximated by the
sum of the first (n + 1) terms, then the magnitude of the error is bounded by
E,=3 wi1lhg|- Values for E, for n=2(1) 15 are given in Table lI. For
the same n, we also give the magnitude of the maximum errors obtained by
the T-method for 0 < z < 1 based on the errors for z =0, 1/4, 1/3, 1/2, 2/3,
3/4, 1 (see Tablel, for example). These data are notated as F, and are
presented in Table II for a =8 =—14 and o = =0. We have not been able



The r-Method Solutions for n =5 and 10

x

OoUVbLWN O

SOLUTION OF A DIFFERENCE EQUATION

S SIGMA=1. ALPH=-0.50 BETA=~0.50
W{N,K) W(N+1,K)

~0.500000000000000D 02 -0.720000000000000D
0.400000000000000D 03  0.840000000000000D
-0.1120000000000007 04 -0.358400000000000D
0,1280000000000000 04 0.6912000000200000
-0.5120000000000000 03 =0.6144000000000000
----- 0.2048000000000000

TAUt= 0.126024900012145C-03

o

.0

b4

0.2500000000000060 00
0.333333333333333D 00
0.500000000000000D 00
0.6666666666666670 00
0.7500000000000000 00
0.1000000000000000 01

~—OWONOVBWN O

SOLUTION OF A

02
03
23
04
04
04

F(N,K)

0.9630000000000000
©.238000060000000D
0.5984000000000000
0.3328000000000000
©.5120000000000000
0.0

TAU2=-0.8563974788203990-05

HN(Z)

0.100000000000C00D Gt
0.110314774439539D 01
0.1119479947642080 01
0.112778023438075D 01
0.110730364539431D0 01
0.1087803381763100 01
0.100011746092522D 01

DIFFERENCE EQUATION

10 SIGMA=1. ALPH=-0.50 BETA=-0.50
W(N,K) W(N+1,K)
-0.200000000000000D 03 =0.242000000000000D
0.660000000000000D 04 0.968000000000000D
-0.844800000000000D 05 -0.151008000000000D
0.5491200000000000 06 0.120806400000000D
-0.2050048000000000 07 -0.5637632000000000
0.465920000000000D0 07 0.164003830000000D
-0.6553600000000000 07 -0.306380800000000D
0.557056000000000D0 07 0.367656360000000D
~0.262144000000000D 07 —-0.273940480000000D
0.524288000000000D0 06 0.115343360000000D
----- -0.2097152000000000
TAU1T= 0.128528086744500D-09 TAUZ=

z HN(Z)
0 0.10000060000000CD 01
.2500000000000000 00  0.1103262175811230 01
.3333333333333330 00  0.1119846063307520 01
.5000000000000000 00  0.112837904420044D 01
.B666666566666667D 00  0.110773243900270D 01
.750000050000000D 00  0.108806560251855D 0t
.100000600000000C 01  0.10000000001339aD 0t

coococoo

03
04
06
07
07
08
08
08
08
08
07

o
0
0
0
o
]
o

1/GAMMA (142)
.100000000000000D
.110326265132084D
.111984652172219D
.112837916709551D
.110773216743247D
.108806525213102D0
.10000000000C000D

F(N,K)

.336891198400000D
.4369778120000000
0.2440992000000000
0.9341519360000000
.8426782720000000
0.8774656000000000
0.9801120000000000D0
.4069785600000000D
0.734003200000000D
.5242880000000000
0.0

o ao

=)

o

0.5459050502104040-11

1/GAMMA (142}
.1060000000000000D

.1103256265132084D
.111984652172219D
.112837916709551D
0.11077321687432470
0,1088065252131020
0.1000060000000000

ccoo

04
04

G(N,K)

0.2494400000000000

05

~0.1046320000000020D 0C6

04 -0.588800000000000D0 04

04
03

01
01
01
01
01
01
01

10
10
10
09
09
08
08
08
07
06

0.417280000000000D

0.204800000000002D

ERROR
0.0

0.1149068254442330~
0.368574080109034D~
0.5969327147593040~
0.4285220381612330-
0.2618703679140300-
~0.1174609252236890~03

G(N,K)

0.1038642503980000
0.285289819200000D

=-0.6267488841600000

0.1430469196800000
0.106551198720000D

-0.5616877568000000

0.228425728000000D
0.556859392000000D

0.3250585600000000

ERROR
0.0

0.475%096028041810~
0.457814669063694D~
0.122895072340867D~
-0.2715702289712850-06
~0.3503878365229700-06
-0.133986377548467D-09

05

-0.1638400000000000 05

04

03
03
03
03
03

12
10
11
AR
LA
10
09
09

-0.2046033920000000 09

08

=0.2097152000000000 €7

06
06
06

=0
-0

-0

HIN,K)

.100000000000000D 01
.58352405800925
.703708318119
.6205332727824%
L757874141237157D-01
.175390203862418D-01

H(N,K)

.1000000000000CCD 01
.5772133365630€80 00
.655881412595311D 00
.419747251923968D-01
. 1664746635285420 00
.419407157830588D-01
~0.
.B8270741109782130-02
~0.
-244836843061222D0-03
~0.

1033423536758650-01
2060340519433200-02

1144B45867858650=-04

JOHLAW-1 FHL ANV SNOLLYNOA dONTYA4dlq

|¥44
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TABLE II

Comparison of Errors in the Taylor Series with the r-Method

Taylor Series r-Method r-Method r-Method

n E, F,a=8=—1% F,a=4=0 E*
2 0.259 0.109 0.123 0.951(-2)
3 0.218 0.489(-2) 0.513(-2) 0.344(-2)
4 0.605(—1) 0.281(--2) 0.369(-2) 0.997(-3)
5 0.183(-1) 0.599(-3) 0.401(-3) 0.227(-3)
6 0.875(-2) 0.562(—4) 0.513(—4) 0.723(—4)
7 0.153(-2) 0.405(—4) 0.397(—4) 0.504(—4)
8 0.366(—3) 0.117(—4) 0.115(—4) 0.580(—5)
9 0.151(=3) 0.182(-5) 0.178(-5) 0.264(-5)
10 0.227(—4) 0.350(—6) 0.465(—6) 0.889(—6)
11 0.271(-5) 0.433(—6) 0.426(—6) 0.357(—6)
12 0.146(—5) 0.106(—6) 0.105(—6) 0.555(—7)
13 0.218(—6) 0.145(-7) 0.170(=7) 0.635(—7)
14 0.124(-7) 0.148(-7) 0.146(—7) 0.146(—7)
15 0.630(—8) 0.447(—8) 0.443(—8) 0.144(—8)

to prove that for fixed z and 0 < z/o < 1, the sequence & ,(z) - [I'(z + 1)] '
as n— oo. However, the computations offer heuristic evidence that this is so.
Also for the n values recorded, F, < E, and so overall in the range
0 z< 1, the t-method gives a better approximation. Notice that the
differences in F, for a =f=—4 and a =B =0 are very slight.

As will be shown in the next section, if 0 - 0, we get an equation like (7),
where the right-hand side is replaced by u,z" + u,z"*". Further with n— oo,
this leads to a scheme to obtain the Taylor series coefficients in the
expansion of 1/I'(z + 1) about z = 0. Suppose that E* is the magnitude of
the maximum error in this polynomial approximation to 1/I'(z + 1) for
0 <z <1 based on the errors for the same z values used above. These data
are also recorded in Table IL. For all the 14 n-values recorded, E7 is less
than F, (a =B =—1) ten times. Further E* < E,, for all n except n = 14.

IV. A MILLER ALGORITHM FOR THE COMPUTATION OF THE
DERIVATIVES OF [I(z +1)]7' AT z=0

When o — 0, the algorithm described by (36) and (37) yields a method of
computing the reduced derivatives

1 d&

=31 a7 |

Iz + 1] (43)
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by taking a limit as n — o0. From (36)

Sn+l n
TI—‘——‘W+I.'_O(U )a 0—‘0,
S, n41
‘[zz._____._+...—0(o' ), U"’O, (44)

Woitn+1Un
Un=qns15n ~ qnSns1-
So as 6 - 0, (7) becomes
z+Dh(z4+ D) =h,(2)=1,2" +1,2"" . (45)

Hence from our previous work,

hn(z) =T Qn(z) + 17 Qn+1(z)9

(47)
TI=—Sn+l/vn’ T2=Sn/vn’
where v, is given in (44). We conjecture that
h,= }gg ks Bk = (T Gn i + Tl 1005 (48)

where A, and q,, , are defined in (6) and (16), respectively.

Recall that in place of the developments surrounding (35) and (37), we
could determine the desired approximation by use of the schema given by
Eqgs. (39)-(42). The same idea can be used to evaluate i, ,. We have

ofr+1
fn,k—l =_kfn,k_ >_. ( k )fn.r’
r=k+1
"or+1
gn.k—lz—kgn,k_ \H < k )g,,,,, k=n—1,n—2,.,1,
r=k+1

(49)
fn.nzo’ fn,n-]zl’

Enn= 1’ gn,n—lz_n'

Then for u, and u, satisfying,

ﬂlfn,o +.Uzgn,0= 1’
" n (50)
By X fontty D 8rk=0,
k=1 k=1

we have

hk~hn,k=:u1fn,k+:u2gn,k’ n— 00. (51)
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TABLE 111

Approximations for the Coefficients in the Taylor Series for 1/I'(z + 1)

SOLUTION OF A DIFFERENCE EQUATION

x

F(N,K)

0.5513000000000000
0.600000000000000D

-0.331800000000000D
0.789000000000000D
0.555000000000000D

-0.30000000C00000CD
0.150000000000000D
0.270000¢0000000CD

~0.900000000000000D
0.10000000000000CD
0.0

0
1
2
3
4
5
6
7
8
9

10

MU1= 0.2571372854241120-03

4

0.0

0.250000C000000000
0.3333333333333330
0.5000000000000000
0.6666666666666670
0.7500000000000000
0.,1000000000000000

SOLUTION OF A

o0
00
00
00
00
01

F(N.K}

0.4151100000000C0D
-0.142102580000000D
0.133069100000000D
0.465165100000000D
-0.154840600000000D
~0.310459000000000D
0.309405000000000D
=-0.55848050000G00CD
-0.11403000000000C0
0.711800000060000D
~0.1120000000000C00
=0.1050€0000000000D
0,770000000000000D
~0.140000000000000D
0.100000000000000D
0.0

MU1= 0.123121123427231D-07

P4

0.0

0.2500000000000000
0.3333333333333330
0.5000000000000000
0.6566666666665670
0.7500000000000000
0.1000000000000000D

00
00
00
[e]e]
00
Q01

04
02
04
03
03
¢3
02
02
01
01

05
o8
07
07
7
06
06
05
05
0a
04
03
02
02
€1

GIN,K)

~0.132080000000000D0
0.177700000000000D
0.62410000000000C0
~0.7747000C0000000D
0.753000000000000D
0.110800000000000D
~0.425000000000000D
0.5000000000000000
0.350000000000000D
~0.10000000C000000D
0.100000000000000D

Mu2=

HN(Z)
.1000000000000000
-1103263540398120
.1119847330864120
.1128379257428450
.1107731499521690
.108806446168615D
.100000000000000D

01
01
01
01
01
01
01

ocoococooco

DIFFERENCE EQUATION

G(N,K}

0.705612850000000D
0.5310150000000000
-0.474539050000000D
~0.700849900000000D
0.13189988000000C0
=-0.270920700000000D0
=0.948225000000000D
0.55813400CC0J3000D
~0.723430000000000D
=-0.213930€00000000D
0.100120000000000D
-0.132500000000000D
=-0.1550000000C00000
0.900000000000000D
=0.15000000€000000D
0.100000000000000D

Mu2=

HN(Z)
.100000C0000C00CD
.110326265003243D
.1119846520654350
.1128379167281660
-1107732168763C0D
.10B8065253574460D
.9999999999959930

3}
01
01
01
01
01
oo

ocoooocoo

05
05
04
04
03
04
03
01
02
02
01

08
08
08
07
08
07
06
08
05
05
C5
04
03
02
02
01

H(N,K)

0.1000000000000000 01
0.577220490530812D €0
~0.,6558745084636050 00
~0.4203734174302381D-01
0.166517021593514D 00
-0.4211215823426000-01
=0.95791651247EB010-02
0.710077993475868D0-02
-0.1207722970663510-02
=0.5900917119117450-04
0.316146456615287D-04

0.3161464566152870-04

1/GAMMA (1+2)
0,100000000000000D
0.110326265132084D
0.111984652172219D
0.1128379167095510
0.110773216743247D
0.1088065252131020
0.100000000000000D

01
01
[*}
01
01
01
01

H{N,K)

¢.1000000000000000 01
0.5772156570845410 00
-0.6558780744007930 00
=0.4200257752274980-01
0.1665386349328320 00
~0.4219787439756380-01
-(.9622020910041300-02
0.721911868204537D-02
-0.1165121626741020-02
~-0.215378372983392D-03
0.128028755455139D-03
~0.200611772788724D0-04
-0.124751667024987D-05
0.1102365516605490-05
~0.2001604025578790-06
0.1416483432670680-07

0.1416463432670680-07

1/GAMMA (142)
0,100000000000000D
0.110326265152084D
0.111984652172219D
0.112837916709551D
0.1107732167432470
0.108806525213102D
0.100000000000000D

01
01
ot
c1
01
01
01

ERROR
0.345944695195361D-15
-0.8890772820180360-06
-0.809141936564117D-06
~0.903329366863659D0-07
0.667910780682845D-06
0.7904448653395240-06
0.5134781488891350-15

ERROR
0.277555756156289D0~16
0.128141031119355D-08
0.1067831822965100-08
-0.185146431602197D-09
~0.133053079665046D-08
~0.144343B035764190-08

0.1054711873393900-14

V. NUMERICAL EVALUATION OF THE COEFFICIENTS IN THE
TAYLOR SERIES EXPANSION OF [I'(z + 1)]~' ABouT z=0

In this section we illustrate computation of the coefficients 4, , according
to the prescription (49)—(51). The relation between the notation in the latter
equations and the machine printouts is as follows.
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This paper Machine
Juk> 8nik F(N, K), G(N, K)
Rk H(N, K)
z Z
> by 2 HN(Z)
k=0

Machine calculations were done for n = 2(1) 40. The data for n = 10 and
15 are recorded in Table III, and we deduce that the coefficients 4, , are
correct to at least 3 and 6 decimal places, respectively. For n =20 and 30,
the values of 4, , are correct to at least 8 and 13 decimal places, respec-
tively. The quantity 4, is y, the Euler or Euler—Mascheroni constant. Let
Y. = h, , be the approximation to y. The values obtained for y,, n = 5(5) 35
are given in Table IV. The value given there for n =00 is y to 15 decimal
places. Note that the difference of y, for n = 30 and 35 from the true y is no
doubt due to round off. Thus on a heuristic basis, we have an alternative
scheme to obtain the Taylor series coefficients and in particular Euler’s
constant.

TABLE 1V

Approximations for Euler’s Constant

n yn
5 0.57692 30769 23077
10 0.57722 04905 30812
15 0.57721 56570 84541
20 0.57721 56649 92483
25 0.57721 56649 00408
30 0.57721 56649 01537
35 0.57721 56649 01535
w 0.57721 56649 01533
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