Solution of Difference Equations by Use of the τ-Method

Yudell L. Luke
Department of Mathematics, University of Missouri, Kansas City, Missouri 64110
Jet Wimp
Department of Mathematics, Drexel University, Philadelphia, Pennsylvania 19104

AND

Bing Y. Ting

The Marley Cooling Tower Company, Mission, Kansas
Communicated by O. Shisha
Received June 2, 1980

Abstract

In the field of differential equations, the τ-method introduced by C . Lanczos has generated considerable interest because of its novel philosophy. That is, rather than attempting to solve an exact equation approximately, it solves an approximate equation exactly. The τ-method when applied to differential equations has many striking properties. In this paper, the concept is applied to difference equations. For a model we use the equation satisfied by the reciprocal of the gamma function, $1 / \Gamma(z+1)$. As a consequence of the analysis, we show how to generate the Taylor series coefficients in the expansion of this function about $z=0$. In particular, a novel technique is provided to compute Euler's constant.

I. Introduction

The τ-method, due to C . Lanczos, was originally devised to obtain polynomial approximations to the solutions of ordinary linear homogeneous differential equations; see Refs. [1, 2], or the volume by Luke [3], which contains a survey of recent developments and many examples.

The τ-method has generated much interest because of its novel philosophy: rather than attempting to solve an exact equation approximately, it solves an
approximate equation exactly. Let the original differential equation be

$$
\begin{equation*}
L \mid h(z)]=0, \quad h^{(j)}(0)=c_{j}, \quad 0 \leqslant j \leqslant r-1, \tag{1}
\end{equation*}
$$

where r is the order of L and where the origin is a regular point of the equation. In its most naive formulation the τ-method takes as an approximate equation

$$
\begin{equation*}
L\left[h_{n}(z)\right]=\tau p_{n}(z / \sigma), \tag{2}
\end{equation*}
$$

where p_{n} is a given polynomial of degree $n, \sigma \neq 0$ a given range parameter and τ a constant to be determined. If the τ-method in this formulation works, $h_{n}(z)$ will be a polynomial of degree n, a solution of the approximate equation which also satisfies the initial conditions for the initial problem. Depending on the problem, it may be necessary to add other τ-terms, e.g.,

$$
\begin{equation*}
\sum_{j=0}^{r} \tau_{j} p_{n+j}(z / \sigma) \tag{3}
\end{equation*}
$$

the number of these being dictated by the requirement that the linear equations for the determination of the coefficients of $h_{n}(z)$ be consistent.

One very useful property of the method is that the error $h_{n}(z)-h(z)$, satisfies the non-homogeneous equation (2). In many important cases the error can be analyzed by applying the method of variation of parameters to this equation.

Generally, the polynomials p_{n} are chosen to be interpolatory in the range $[0,1]$ and σ is chosen so that $[0, \sigma]$ is the largest interval over which the approximation is required. Often p_{n} is taken to be the Jacobi polynomial $P_{n}^{(\alpha, \beta)}$ shifted to $[0,1]$.

All in all, the application of the τ-method to differential equations is rather straightforward. The existence and uniqueness of polynomial solutions is easily assured, even polynomial solutions having prescribed initial data. Often convergence as $n \rightarrow \infty$ can be shown.
Instead of solving (2), we could seek a polynomial solution of this same equation with $\tau p_{n}(z / \sigma)$ replaced by a single power of z, say z^{n}. This idea goes back to Lanczos [1], and was subsequently studied by Ortiz [4]. The solution is called a canonical polynomial. Then the solution to (2) with appropriate linear initial conditions is a particular combination of the canonical polynomials. The scheme can be advantageous since the canonical polynomials used to obtain the solution of (2) are available to obtain the solution of (2) with n replaced by $n+1$.

Since several important higher transcendental functions satisfy difference rather than differential equations, we sought to extend the application of the τ-method to these kinds of equations. We encountered problems immediately.

For instance, there is no theory guaranteeing polynomial solutions of the related approximate equation. In fact, in the example treated in this paper, the functions satisfying the approximate equation are meromorphic, with simple poles, some in the range where the approximation is to hold. Fortunately (and we are not certain whether this is simply a characteristic of our example) it is possible to choose the τ_{j} so the residues of the solution are zero, and further, to restrict the growth of the solution. The effect of this construction is to yield a polynomial solution.

The body of our paper consists of a single example, the equation for the reciprocal of the gamma function $1 / \Gamma(z+1)$ and numerics. Many of the peculiarities of this example, we feel, will apply to other difference equations and point the way for future investigations.

II. The τ-Method

Consider the difference equation

$$
\begin{equation*}
(z+1) h(z+1)-h(z)=0 \tag{4}
\end{equation*}
$$

which is satisfied by

$$
\begin{equation*}
h(z)=\frac{C(z)}{\Gamma(z+1)}, \tag{5}
\end{equation*}
$$

where $\Gamma(z)$ is the gamma function and $C(z)$ is an arbitrary periodic function with period 1 . We take $C(z)=1$. The reciprocal of the gamma function is entire so we have the series representation

$$
\begin{equation*}
h(z)=\frac{1}{\Gamma(z+1)}=\sum_{k=0}^{\infty} h_{k} z^{k}, \quad h_{0}=1,|z|<\infty . \tag{6}
\end{equation*}
$$

The coefficients $h_{k}, k=1(1) 29$ to $20 d$ are available in the volumes by Luke [3, 5].

In the spirit of the τ-method, we shall study the difference equation

$$
\begin{align*}
(z+1) h_{n}(z+1)-h_{n}(z)= & \tau_{1} A_{n} R_{n}^{(\alpha, \beta)}(z / \sigma) \\
& +\tau_{2} A_{n+1} R_{n+1}^{(\alpha, \beta)}(z / \sigma), \quad 0<z / \sigma \leqslant 1 \\
A_{n} R_{n}^{(\alpha, \beta)}(x)= & A_{n} P_{n}^{(\alpha, \beta)}(2 x-1) \tag{7}\\
= & \sum_{k=0}^{n} \frac{(-)^{k}\binom{n}{k}(n+\lambda)_{k} x^{k}}{(\beta+1)_{k}}, \\
A_{n}= & \frac{(-)^{n} n!}{(\beta+1)_{n}}, \quad \lambda=\alpha+\beta+1 \tag{8}
\end{align*}
$$

We look for a solution of (7) in the form

$$
\begin{equation*}
h_{n}(z)=\sum_{k=0}^{n} h_{n, k} z^{k}, \quad h_{n, 0}=1 . \tag{9}
\end{equation*}
$$

Note from (4) and (7) that $\varepsilon_{n}(z)=h_{n}(z)-h(z)$ also satisfies (7).
Because of the additive property of particular solutions of (7), if we can determine a solution of

$$
\begin{equation*}
(z+1) g(z+1)-g(z)=z^{k}, \quad k=0,1,2, \ldots, \tag{10}
\end{equation*}
$$

then a particular solution of (4) readily follows. This approach is analogous to the canonical polynomial scheme of Lanczos for differential equations. Let

$$
\begin{equation*}
g(z)=\varphi(z) / \Gamma(z+1) . \tag{11}
\end{equation*}
$$

Then

$$
\begin{equation*}
\varphi(z+1)-\varphi(z)=z^{k} \Gamma(z+1) . \tag{12}
\end{equation*}
$$

One might hope to solve this equation by applying the Nörlund sum operator, but the Nörlund sum of the function on the right-hand side does not converge. To get around this, replace z by $-z$ and take $\theta(z+1)=\varphi(-z)$. Then

$$
\begin{equation*}
\theta(z+1)-\theta(z)=-\Gamma(1-z)(-z)^{k} . \tag{13}
\end{equation*}
$$

The Nörlund sum of the function on the right now converges. We have for a particular solution

$$
\begin{equation*}
\theta(z)=\sum_{j=0}^{\infty} \Gamma(1-z-j)(-z-j)^{k}, \quad z \neq 0, \pm 1, \pm 2, \ldots \tag{14}
\end{equation*}
$$

Thus a particular solution of (10) is

$$
\begin{equation*}
P_{k}(z)=\sum_{j=0}^{\infty} \frac{(-)^{j+1}(z-1-j)^{k}}{(-z)_{j+1}}, \quad z \neq 0,1,2, \ldots . \tag{15}
\end{equation*}
$$

It is easy to see from (15) that $P_{0}(z)$ is a meromorphic function whose only singularities are simple poles at $z=0,1,2, \ldots$. Also $P_{1}(z)=1$. If $k>1$, $P_{k}(z)$ has the same singular behavior as $P_{0}(z)$ and except for the singular part, $P_{k}(z)$ as we shall show, is a polynomial in z of degree $(k-1)$. Thus we can write

$$
\begin{align*}
& P_{k}(z)=\sum_{m=0}^{\infty} \frac{d_{k, m}}{z-m}+Q_{k}(z), \\
& Q_{k}(z)=\sum_{m=0}^{k-1} q_{k, m} z^{m}, \quad q_{k, 0} \equiv q_{k}, \tag{16}\\
& Q_{0}(z)=0, d_{1, m}=0 \quad \text { for all } m .
\end{align*}
$$

Then

$$
\begin{align*}
d_{k, m} & =\text { Residue } P_{k}(z)=\lim _{z \rightarrow m}(z-m) P_{k}(z) \\
& =\lim _{z \rightarrow m} \sum_{j=0}^{\infty} \frac{(-)^{j}(z-1-j)^{k}}{(-z)(1-z) \cdots(m+1+z)(m+1-z)(m+2-z) \cdots(j-z)} \tag{17}\\
& =S_{k} / m! \\
S_{k} & =(-)^{k} \sum_{j=0}^{\infty} \frac{(-)^{j}(j+1)^{k}}{j!}, \quad S_{0}=e^{-1}, S_{1}=0 .
\end{align*}
$$

Define

$$
\begin{equation*}
u_{k}=\lim _{z \rightarrow 0}\left\{\frac{d}{d z}\left[z P_{k}(z)\right]\right\}=q_{k}-S_{k} \sum_{m=1}^{\infty} \frac{1}{m(m!)}, \quad q_{k} \equiv q_{k, 0} . \tag{18}
\end{equation*}
$$

Taking the limit directly in (15) gives

$$
\begin{equation*}
u_{k}=(-)^{k} \sum_{j=0}^{\infty} \frac{(-)^{j}(j+1)^{k}}{j!}\left[-\frac{k}{j+1}+\psi(j+1)-\psi(1)\right] \tag{19}
\end{equation*}
$$

where $\psi(z)$ is the logarithmic derivative of the gamma function.
Comparing (18) and (19) and using some results in Luke [3, Vol. 1, p. 222, Eqs. (15) and (18)], we find that $q_{0}=0$ and to $15 d$,

$$
\begin{equation*}
u_{0}=-e^{-1}[E i(1)-\gamma]=-0.4848829106995688 . \tag{20}
\end{equation*}
$$

Here γ is the Euler-Mascheroni constant. The numerical result in (20) is readily deduced from known tables. Since $q_{0}=0$, from (18),

$$
\begin{equation*}
u_{k}=q_{k}+S_{k} e u_{0} . \tag{21}
\end{equation*}
$$

It will be necessary to compute S_{k} and q_{k} for $1 \leqslant k \leqslant n+1$. Obviously use of either (17) or (19) is not a satisfactory way of doing this especially for k large because of round off error.

We now develop some properties of $P_{k}(z)$ which will be useful and will also lead to more reasonable representations for $Q_{k}(z), S_{k}$ and q_{k} including
recurrence formulas. The results can be summarized by the following theorem.

THEOREM 1. The functions $P_{k}(z)$ satisfy the recurrence formula

$$
\begin{align*}
P_{k+1}(z)=(z-1)^{k}+(-)^{k} \sum_{r=0}^{k-1}(-)^{r}\binom{k}{r} & P_{r}(z) \\
& P_{1}(z)=1, k=1,2, \ldots \tag{22}
\end{align*}
$$

Further

$$
\begin{align*}
& S_{k+1}=(-)^{k} \sum_{r=0}^{k-1}(-)^{r}\binom{k}{r} S_{r}, \quad k \geqslant 1, \tag{23}\\
& q_{k+1}=(-)^{k}+(-)^{k} \sum_{r=1}^{k-1}(-)^{r}\binom{k}{r} q_{r} \\
& \quad q_{0}=0, q_{1}=1, k=2,3, \ldots \tag{24}
\end{align*}
$$

Note. The formulae (22)-(24) are valid for $k=0,0$ and 1 , respectively, provided the empty sum $\sum_{r=1}^{-1}$ is treated as zero. Also if we let $S_{k}=e^{-1} s_{k}$, then the s_{k} 's are integers, and for example,

$$
\begin{gather*}
s_{0}=1, \quad s_{1}=0, \quad s_{2}=-1, \tag{25}\\
s_{3}=1, \quad s_{4}=2, \quad s_{5}=-s_{6}=-9 .
\end{gather*}
$$

Proof. Replace k by r in (15), multiply by $t^{r}\binom{k}{r}$ and sum from $r=0$ to $r=k$. Then

$$
\sum_{r=0}^{k} t^{r}\binom{k}{r} P_{r}(z)=\sum_{r=0}^{k} t^{r}\binom{k}{r} \sum_{j=0}^{\infty} \frac{(-)^{j+1}(z+1-j)^{r}}{(-z)_{j+1}}
$$

But

$$
\sum_{r=\mathbf{0}}^{k} t^{r}\binom{k}{r}(z-1-j)^{r}=[1+t(z-1-j)]^{k}
$$

and so

$$
\begin{equation*}
\sum_{r=0}^{k} t^{r}\binom{k}{r} P_{r}(z)=t^{k} \sum_{j=0}^{\infty} \frac{(-)^{j+1}(z-1-j+1 / t)^{k}}{(-z)_{j+1}} \tag{26}
\end{equation*}
$$

Also from (15),

$$
\begin{align*}
P_{k}(z)+P_{k+1}(z) & =\sum_{j=0}^{\infty} \frac{(-)^{j+1}}{(-z)_{j+1}}\left\{(z-1-j)^{k}+(z-1-j)^{k+1}\right\} \\
& =\sum_{j=0}^{\infty} \frac{(-)^{j}(z-1-j)^{k}}{(-z)_{j}} \\
& =(z-1)^{k}+\sum_{j=0}^{\infty} \frac{(-)^{j+1}(z-2-j)^{k}}{(-z)_{j+1}} . \tag{2}
\end{align*}
$$

Combining this with (25) for $t=-1$ gives the statement (22). Equation (23) follows from (17) and (24) emerges when the limit process in (18) is applied to (22) and account is taken of (21) and (23).

We now have the machinery to establish (16) and some related results.
Theorem 2. (a) $P_{0}(z)$ is a meromorphic function whose only singularities are simple poles at $z=0$ and the positive integers
(b) $P_{1}(z)=1$.
(c) $P_{k}(z)$ has the same singular behavior as $P_{0}(z), k>1$.
(d) Except for the singular part, $P_{k}(z)$ is a polynomial in z of degree $k-1$, call it $Q_{k}(z)$ (see (16)),

$$
\begin{equation*}
P_{k}(z)=S_{k} P_{0}(z) / S_{0}+Q_{k}(z) . \tag{28}
\end{equation*}
$$

(e) $Q_{k}(z)$ satisfies the recursion formula

$$
\begin{align*}
& Q_{k+1}(z)=(z-1)^{k}+(-)^{k} \sum_{r=0}^{k-1}(-)^{r}\binom{k}{r} Q_{r}(z) \\
& Q_{0}(z)=0, Q_{1}(z)=1, k=1,2, \ldots \tag{29}
\end{align*}
$$

Proof. Parts (a) and (b) are easily verified from (15). Items (c) and (d) follow by induction using (22). Equations (28) and (29) also follow by induction using (22) and (23).

It is interesting that the recursion formula naturally gives $Q_{k}(z)$ as a polynomial in $(z-1)$ of degree $k-1$. We have

$$
\begin{align*}
Q_{2}(z) & =(z-1), \quad Q_{3}(z)=(z-1)^{2}-2=z^{2}-2 z-1, \\
Q_{4}(z) & =(z-1)^{3}-3(z-1)+3=z^{3}-3 z^{2}+5, \\
Q_{5}(z) & =(z-1)^{4}-4(z-1)^{2}+6(z-1)+4 \tag{30}\\
& =z^{4}-4 z^{3}+2 z^{2}+10 z-5,
\end{align*}
$$

$$
\begin{aligned}
Q_{6}(z) & =(z-1)^{5}-5(z-1)^{3}+10(z-1)^{2}+5(z-1)-30 \\
& =z^{5}-5 z^{4}+5 z^{3}+15 z^{2}-25 z-21 .
\end{aligned}
$$

The "canonical" polynomials $Q_{k}(z)$ also satisfy the z difference equation

$$
\begin{equation*}
(z+1) Q_{k}(z+1)-Q_{k}(z)=z^{k}-S_{k} / S_{0} . \tag{31}
\end{equation*}
$$

The following theorem gives an estimate for $P_{k}(z)$.
Theorem 3. Let $N_{\rho}(a)$ denote the open ball in C with center a, radius ρ and for a fixed $\delta, 0<\delta<\frac{1}{2}$, let $D_{\delta}=C-\bigcup_{k=0}^{\infty} N_{\delta}(k)$. Then

$$
\begin{equation*}
P_{k}(z) / z^{k-1}=1+O\left(z^{-1}\right), \quad z \rightarrow \infty \text { in } D_{\delta} . \tag{32}
\end{equation*}
$$

Proof. By virtue of (22), we need only show this for $P_{0}(z) . P_{0}(z)$ may be expressed in terms of the confluent hypergeometric function.

$$
\begin{align*}
z P_{0}(z) & =1+(z-1)^{-1} K(z), \\
K(z) & ={ }_{1} F_{1}(1 ; 2-z ;-1)=e^{-1}{ }_{1} F_{1}(1-z ; 2-z ; 1) \tag{33}\\
& =e^{-1} \sum_{j=0}^{\infty}\left(\frac{1-z}{1-z+j}\right) \frac{1}{j!},
\end{align*}
$$

the latter following from Kummer's transformation formula. Now ($1-z$)/ $(1-z+j)=1-j /(1-z+j)$ and so

$$
K(z)=e^{-1}\left\{e-\sum_{j=0}^{\infty}[(j+2-z) j!]^{-1}\right\} .
$$

Since $|j+2-z| \geqslant \delta$ in D_{δ}, we have

$$
\begin{equation*}
|K(z)| \leqslant\left(1+\delta^{-1}\right) \quad \text { in } D_{\delta}, \tag{34}
\end{equation*}
$$

and using this in the first line of (33) gives the required result.
We now return to the original difference equation (7). Using (10) and (15), we have

$$
\begin{align*}
& h_{n}(z)=\tau_{1} \sum_{k=0}^{n} w_{n, k} P_{k}(z)+\tau_{2} \sum_{k=0}^{n+1} w_{n+1, k} P_{k}(z), \tag{35}\\
& w_{n, k}=\frac{(-)^{k}}{\sigma^{k}}\binom{n}{k} \frac{(n+\lambda)_{k}}{(\beta+1)_{k}}, \quad \lambda=\alpha+\beta+1,
\end{align*}
$$

which is meromorphic with simple poles at $z=0,1,2, \ldots$ and is $O\left(z^{n}\right)$ in D_{δ}. We want to impose two conditions on $h_{n}(z)$: first, that it is a polynomial of
degree not greater than n and second, $h_{n}(0)=1$. Put (28) in (35) and note (16). Then these conditions translate to give equations

$$
\begin{align*}
& \tau_{1} \sum_{k=0}^{n} w_{n, k} S_{k}+\tau_{2} \sum_{k=0}^{n+1} w_{n+1, k} S_{k}=0 \tag{36}\\
& \tau_{1} \sum_{k=0}^{n} w_{n, k} q_{k}+\tau_{2} \sum_{k=0}^{n+1} w_{n+1, k} q_{k}=1
\end{align*}
$$

We can then write

$$
\begin{equation*}
h_{n}(z)=\tau_{1} \sum_{k=0}^{n} w_{n, k} Q_{k}(z)+\tau_{2} \sum_{k=0}^{n+1} w_{n+1, k} Q_{k}(z) . \tag{37}
\end{equation*}
$$

We summarize the facts concerning the derivation of (36) and (37) as an existence and uniqueness

Theorem 4. Let $\alpha>-1, \beta>-1, n \geqslant 0$ and σ be given. Let the determinant of the system (36) be non-zero. Then there exist unique constants τ_{1} and τ_{2}, and a unique polynomial $h_{n}(z)$ of degree not exceeding n with $h_{n}(0)=1$ satisfying (7). If $\tau_{2} \neq 0$, the degree of $h_{n}(z)$ is exactly n.

The coefficients $h_{n, k}$ in $h_{n}(z)$ (see (9)) can be obtained from (37) with the aid of (29) and (30). This procedure can be avoided by use of a recursion formula for $h_{n, k}$. Put (9) in (7) and equate like powers of z. Then

$$
\begin{align*}
& \sum_{r=k-1}^{n}\binom{r+1}{k} h_{n, r}-h_{n, k}=\tau_{1} w_{n, k}+\tau_{2} w_{n+1, k} \\
& k=n, n-1, \ldots, 1, h_{n, n}=\tau_{2} w_{n+1, n+1} \tag{38}
\end{align*}
$$

The latter is fascinating for it suggests another way of computing $h_{n, k}$ which avoids use of the S_{k} 's and the q_{k} 's. The procedure which is much akin to the J. C. P. Miller algorithm for solutions of linear recurrence equations is as follows. Compute $f_{n, k}$ and $g_{n, k}$ by recursion using

$$
\begin{align*}
f_{n, k-1} & =w_{n, k}-k f_{n, k}-\sum_{r=k+1}^{n}\binom{r+1}{k} f_{n, r}, \\
g_{n, k-1} & =w_{n+1, k}-k g_{n, k}-\sum_{r=k+1}^{n}\binom{r+1}{k} g_{n, r}, \quad k=n-1, n-2, \ldots, 1, \tag{39}\\
f_{n, n} & =0, \quad f_{n, n-1}=w_{n, n}, \\
g_{n, n} & =w_{n+1, n+1}, g_{n, n-1}=w_{n+1, n}-n w_{n+1, n+1} .
\end{align*}
$$

Then

$$
\begin{equation*}
h_{n, k}=\tau_{1} f_{n, k}+\tau_{2} g_{n, k} \tag{40}
\end{equation*}
$$

and the coefficients are completely determined once we know τ_{1} and τ_{2}. Since $h_{n}(0)=1$,

$$
\begin{equation*}
t_{1} f_{n, 0}+\tau_{2} g_{n, 0}=1 . \tag{41}
\end{equation*}
$$

To obtain a second relation involving τ_{1} and τ_{2}, combine (7) and (9) with $z=0$ and use (40). Then

$$
\begin{equation*}
\tau_{1}\left(1-\sum_{k=1}^{n} f_{n, k}\right)+\tau_{2}\left(1-\sum_{k=1}^{n} g_{n, k}\right)=0 \tag{42}
\end{equation*}
$$

III. Numerics for the τ-Method

In this section we present some numerics to illustrate computation of the approximations for $[\Gamma(z+1)]^{-1}$ based on the scheme (39)-(42). In all the exhibited calculations, $\alpha=\beta=-\frac{1}{2}$ or $\alpha=\beta=0$, and $\sigma=1$. The following table relates the machine notation with that of this paper.

Notation

$q_{n, k}$, where	Q(N, K) where
$q=w, f, g$ or h	Q $=\mathrm{W}, \mathrm{F}, \mathrm{G}$, or H
τ_{1}, τ_{2}	TAU1, TAU2
z	Z
$h_{n}(z)$	$\operatorname{HN}(\mathrm{Z})$

Computations were done for $n=2(1) 15$. The printouts for $n=5$ and 10 with $\alpha=\beta=-\frac{1}{2}$ are given in Table I.

Coefficients in the Taylor series expansion of $1 / \Gamma(z+1)$ about $z=0$ will be found in either of the volumes by Luke [3,5]. Clearly the series converges for all z. Let $0 \leqslant z \leqslant 1$. If $1 / \Gamma(z+1)=\sum_{k=0}^{\infty} h_{k} z^{k}$ is approximated by the sum of the first $(n+1)$ terms, then the magnitude of the error is bounded by $E_{n}=\sum_{k=n+1}^{\infty}\left|h_{k}\right|$. Values for E_{n} for $n=2(1) 15$ are given in Table II. For the same n, we also give the magnitude of the maximum errors obtained by the τ-method for $0 \leqslant z \leqslant 1$ based on the errors for $z=0,1 / 4,1 / 3,1 / 2,2 / 3$, $3 / 4,1$ (see Table I, for example). These data are notated as F_{n} and are presented in Table II for $\alpha=\beta=-\frac{1}{2}$ and $\alpha=\beta=0$. We have not been able

SOLIUTION OF A DIFFERENCE EQUATION

```
5 SIGMA \(=1 \quad A L P H=-0.50 \quad\) EETA \(=0.50\)
```


$F(N, K)$
G(N.K)
HIN, K
$\begin{array}{llllllllll}0 & -\cdots & -0.96300000000000000 & 04 & 0.24944000000000000 & 05 & 0.10000000000000000 & 01\end{array}$

 0.12800000000000004 0. $0.691200000000000004-0.512000000000000003-0.463840000000000005 \quad 0.7578741412371570-0$
 $6 \quad-2.0 \quad 0.204800000000000004$ $0.204800000000002004-0.1753902036624190-0$

TAUT $=0.1260249000121450-03$
TAU2 $=-0.8563974788203930-05$
0.0
0.250000000000000000 0.500000000333330 OD 0.666666666666670 0.750000000000000000 0.1000000000000000
0.100000000000000001
0.110314774449539001 0. 11194799476.4288001 0.112776023438075001 0.108780338176310001
0.100011746092522001

1/gamma ($1+2$)
0.10000000000000000
0.110326265132084001
0.11198465217221900
0.11283791670955100
0.1107732167432470 o
0. 1000000000000000
0.0
$0.114906825444239 \mathrm{D}-03$ $0.3655740801090940-03$ $0.5969327147593040-03$ $0.2618703679140300-03$ $-0.1174609252236890-03$

SOLUTION OF A DIFFERENCE EQUATION
$N=10$

$$
\text { SIGMA }=1 . \quad A L P H=-0.50 \quad \text { BET } A=-0.50
$$

k

$$
w(N, K)
$$

$W(N+1, k)$

 -----$F(N, K)$
G(N.K
H(N,K)
$\begin{array}{llllllll}1-0.20000000000000000 & 03 & -0.2420000000000000 & 03 & 0.3368911984000000 & 10 \\ 1\end{array}$
$20.660000000000000004 \quad 0.968000000000000004-0.2440992000000000$
$3-0.844800000000000005-0.151008000000000006-0.934151936000000009$
$4 \quad 0.549120000000000006 \quad 0.120806400000000007$
$5-0.205004800000000007-0.563763200000000007-0.877465600000000009$
$6 \quad 0.4659200000000000 \quad 07 \quad 0.1640038400000000$ 08 -0.8774656000000000
$7-0.655360000000000007-0.306380800000000008$ 08 0.406978560000000008
$9-0.252144000000000007-0.273940480000000008$ 08 0.5344288000000000007
$10 \quad 0.524288000000000006 \quad 0.1153433000000000$ 08 0.0
: 1 -----
0.209715200000000007

TAU1 $=0.128528086744500 D-09 \quad$ TAU2 $=0.545905050210404 D-1$
0.0
0.250000000000000000 0.333333333333333000 0.500000000000000 D 00 $0.666566666666667 D$
0.7500000000000000 0.750000000000000000
0.100000000000000001

HN(Z)
0.100000000000000001
0.110326217581123001 0.111984606340752001 0.112837904420044001 0.110773243900270001 -. 00000000 13390 01
/GAMMA ($1+2$)
0.10000000000000000
0.110326265132084 D o
0.11198465217221900
0.1128379167095510 ol
0.110773216743247001
0.1000000000000000

TABLE II
Comparison of Errors in the Taylor Series with the τ-Method

n	Taylor Series E_{n}	τ-Method $F_{n}, \alpha=\beta=-\frac{1}{2}$	τ-Method $F_{n}, \alpha=\beta=0$	τ-Method E_{n}^{*}
2	0.259	0.109	0.123	$0.951(-2)$
3	0.218	$0.489(-2)$	$0.513(-2)$	$0.344(-2)$
4	$0.605(-1)$	$0.281(-2)$	$0.369(-2)$	$0.997(-3)$
5	$0.183(-1)$	$0.599(-3)$	$0.401(-3)$	$0.227(-3)$
6	$0.875(-2)$	$0.562(-4)$	$0.513(-4)$	$0.723(-4)$
7	$0.153(-2)$	$0.405(-4)$	$0.397(-4)$	$0.504(-4)$
8	$0.366(-3)$	$0.117(-4)$	$0.115(-4)$	$0.580(-5)$
9	$0.151(-3)$	$0.182(-5)$	$0.178(-5)$	$0.264(-5)$
10	$0.227(-4)$	$0.350(-6)$	$0.465(-6)$	$0.889(-6)$
11	$0.271(-5)$	$0.433(-6)$	$0.426(-6)$	$0.357(-6)$
12	$0.146(-5)$	$0.106(-6)$	$0.105(-6)$	$0.555(-7)$
13	$0.218(-6)$	$0.145(-7)$	$0.170(-7)$	$0.635(-7)$
14	$0.124(-7)$	$0.148(-7)$	$0.146(-7)$	$0.146(-7)$
15	$0.630(-8)$	$0.447(-8)$	$0.443(-8)$	$0.144(-8)$

to prove that for fixed z and $0<z / \sigma \leqslant 1$, the sequence $h_{n}(z) \rightarrow\left[\left.\Gamma(z+1)\right|^{-1}\right.$ as $n \rightarrow \infty$. However, the computations offer heuristic evidence that this is so. Also for the n values recorded, $F_{n}<E_{n}$ and so overall in the range $0 \leqslant z \leqslant 1$, the τ-method gives a better approximation. Notice that the differences in F_{n} for $\alpha=\beta=-\frac{1}{2}$ and $\alpha=\beta=0$ are very slight.

As will be shown in the next section, if $\sigma \rightarrow 0$, we get an equation like (7), where the right-hand side is replaced by $u_{1} z^{n}+u_{2} z^{n+1}$. Further with $n \rightarrow \infty$, this leads to a scheme to obtain the Taylor series coefficients in the expansion of $1 / \Gamma(z+1)$ about $z=0$. Suppose that E_{n}^{*} is the magnitude of the maximum error in this polynomial approximation to $1 / \Gamma(z+1)$ for $0 \leqslant z \leqslant 1$ based on the errors for the same z values used above. These data are also recorded in Table II. For all the $14 n$-values recorded, E_{n}^{*} is less than $F_{n}\left(\alpha=\beta=-\frac{1}{2}\right)$ ten times. Further $E_{n}^{*}<E_{n}$ for all n except $n=14$.

IV. A Miler Algorithm for the Computation of the Derivatives of $[\Gamma(z+1)]^{-1}$ at $z=0$

When $\sigma \rightarrow 0$, the algorithm described by (36) and (37) yields a method of computing the reduced derivatives

$$
\begin{equation*}
h_{k}=\frac{1}{k!} \frac{d^{k}}{d z^{k}}[\Gamma(z+1)]_{z=0}^{-1} \tag{43}
\end{equation*}
$$

by taking a limit as $n \rightarrow \infty$. From (36)

$$
\begin{array}{ll}
\tau_{1}=-\frac{S_{n+1}}{w_{n, n} v_{n}}+\cdots=O\left(\sigma^{n}\right), & \sigma \rightarrow 0, \\
\tau_{2}=\frac{S_{n}}{w_{n+1, n+1} v_{n}}+\cdots=O\left(\sigma^{n+1}\right), & \sigma \rightarrow 0, \tag{44}\\
v_{n}=q_{n+1} S_{n}-q_{n} S_{n+1} . &
\end{array}
$$

So as $\sigma \rightarrow 0$, (7) becomes

$$
\begin{equation*}
(z+1) h_{n}(z+1)-h_{n}(z)=\tau_{1} z^{n}+\tau_{2} z^{n+1} . \tag{45}
\end{equation*}
$$

Hence from our previous work,

$$
\begin{gather*}
h_{n}(z)=\tau_{1} Q_{n}(z)+\tau_{2} Q_{n+1}(z), \tag{47}\\
\tau_{1}=-S_{n+1} / v_{n}, \quad \tau_{2}=S_{n} / v_{n},
\end{gather*}
$$

where v_{n} is given in (44). We conjecture that

$$
\begin{equation*}
h_{k}=\lim _{n \rightarrow \infty} h_{n, k}, \quad h_{n, k}=\left(\tau_{1} q_{n, k}+\tau_{2} q_{n+1, k}\right), \tag{48}
\end{equation*}
$$

where h_{k} and $q_{n, k}$ are defined in (6) and (16), respectively.
Recall that in place of the developments surrounding (35) and (37), we could determine the desired approximation by use of the schema given by Eqs. (39)-(42). The same idea can be used to evaluate $h_{n, k}$. We have

$$
\begin{align*}
f_{n, k-1} & =-k f_{n, k}-\sum_{r=k+1}^{n}\binom{r+1}{k} f_{n, r}, \\
g_{n, k-1} & =-k g_{n, k}-\sum_{r=k+1}^{n}\binom{r+1}{k} g_{n, r}, \quad k=n-1, n-2, \ldots, 1, \tag{49}\\
f_{n, n} & =0, \quad f_{n, n-1}=1, \\
g_{n, n} & =1, \quad g_{n, n-1}=-n .
\end{align*}
$$

Then for μ_{1} and μ_{2} satisfying,

$$
\begin{align*}
\mu_{1} f_{n, 0}+\mu_{2} g_{n, 0} & =1 \\
\mu_{1} \sum_{k=1}^{n} f_{n, k}+\mu_{2} \sum_{k=1}^{n} g_{n, k} & =0 \tag{50}
\end{align*}
$$

we have

$$
\begin{equation*}
h_{k} \sim h_{n, k}=\mu_{1} f_{n, k}+\mu_{2} g_{n, k}, \quad n \rightarrow \infty . \tag{51}
\end{equation*}
$$

TABLE III

Approximations for the Coefficients in the Taylor Series for $1 / \Gamma(z+1)$

```
SOLUTIJN OF A DIfference equation
```

$N=10$					
k	$F(N, K)$		$G(N, K)$		$H(N, K)$
0	0.5513000000000000	04	-0.1320900000000000	05	0.100000000000000001
1	0.6000000000000000	02	0.1777000000000000	05	0.577220490530R:20 00
2	-0.3318000000000000	04	0.6241000000000000	04	-0.6558745094636050 00
3	0.7890000000000000	03	-0.7747000000000000	04	-0.4203734174023810-01
4	0.5550000000000000	03	0.7530000000000000	03	0.166517021593514 D 00
5	-0.3000000000000000	03	0.1108000000000000	04	-0.4211215823426C0D-01
6	0.1500000000000000	02	-0.4250000000000000	03	-0.9579165124788010-02
7	0.2700000000000000	02	0.5000000000000000	01	0.710077993475868D-02
8	-0.9000000000000000	01	0.3500000000000000	02	-0.120772297066351 D-02
9	0.1000000000000000	01	-0.1000000000000000	02	-0.590091711911745D-04
10	0.0		0.1000000000000000	01	0.3151464566:5287D-04

MU1 $=0.2571372854249130-03 \quad$ MU2 $=0.3161464566152870-04$
z
0.0
0.250000000000000000
0.333333333333333000 0.500000000000000000 0.666666666666667000 0.750000000000000000 0.100000000000000001

HN(Z)

0.100000000000000001 0.110326354039812001 0.111984733086412001 0.112837925742845001 0.110773149952169001 0.108806446168615001 0.100000000000000001

1/GAMMA ($1+2$)
0.100000000000000001
0.110326265132084001
0.111984652172219001 0.112837916709551 D 01 0.110773216743247001 0.108806525213102001 0.100000000000000001

ERROR
0.3469446951953610-15 -0.8890772820180360-06 -0.809141936564117D-06 $-0.903329366863659 \mathrm{D}-07$ 0.6679107806828450-06
$0.790444865339524 D-06$
$0.5134781488891350-15$

SOLUTION OF A DIFFERENCE EQUATION
$N=15$

Abstract

k $F(N, K)$ $G(N, K)$ $H(N, K)$ 00.415110000000000005 - $705 \mathrm{C}^{2} 5000$ 0.705612850000000000 $1-0.142102580000000008$ $20.133069100000000007-0.474599050000000008$ $30.465165100000000007-0.700849900000000007$ $4-0.1048406000000000 \quad 07 \quad 0.131899880000000008$ 5-0.310459000000000D 00 0. 270 $6 \quad 0.3094050000000000 \quad 06-0.948225000000000006$ $7-0.55848000000000 \mathrm{CD} 050.558194000000000005$ $8-0.11403000000000 \mathrm{C} 05-0.723430000000000005$ $9 \quad 0.711900000000000 \mathrm{D}-0.213930000000000 \mathrm{D}-05$ $0-0.1120000000000000 \quad 04 \quad 0.100120000000000 \mathrm{D} \quad \mathrm{E}$ $-0.105000000000000003-0.132500000000000004$ $0.770000000000000002-0.155000000000000003$ $3-0.1400000000000000 \quad 02 \quad 0.900000000000000002$ $4 \quad 0.1000000000000000<1-0.150000000000000002$ 0.100000000000000001 0.100000000000000001 0.577215657084541000 -0.655878074400793000 $-0.4200257752274980-01$ 0.166538634932832000 $-0.4219787439756380-01$ $-0.9622020910041300-02$ $0.721911868204537 \mathrm{D}-02$ -0.1165121626741020-02 -0.215.378372983392D-03 $0.128028755455139 \mathrm{D}-03$ $-0.200611772728724 \mathrm{D}-04$ -0.124751667024987D-05 $0.110246551660549 \mathrm{D}-05$ -0.200i60402557879D-06 $0.1416483432670680-07$

MU9 $=0.1231211234272310-07$
MU2 $=0.141648343267068 \mathrm{D}-07$

2
0.0
0.250000000000000000 0.333333333333333000 0.500000000000000000 0.666666666666667 D 00 0.750000000000000000 0.100000000000000001

HN (Z)
0.100000000000000001 0.110326255003943001 0.111984652065435001 0.112837916728166001 0.110773216876300001 $0.10 \mathrm{EB065253574460} 01$ 0.999999999999999000
$1 /$ GAMA1A $(1+2)$ 0.100000000000000001 0.110326265152084001 0.111984652172219001 0.112837916709551001 0.110773216743247 D 01 0.108806525213102 D 01 0.100000000000000001

ERTOR
0.2775557561562890-16 $0.1281410311193550-08$ $0.1067831822965100=08$ $-0.1851464316021970-09$ $-0.1330530796650460-08$ $-0.1443438035764190-08$ $0.1054711973393900-14$

V. Numerical Evaluation of the Coefficients in the Taylor Series Expansion of $[\Gamma(z+1)]^{-1}$ About $z=0$

In this section we illustrate computation of the coefficients $h_{n, k}$ according to the prescription (49)-(51). The relation between the notation in the latter equations and the machine printouts is as follows.

This paper

$$
\begin{gathered}
f_{n, k}, g_{n, k} \\
h_{n, k} \\
z \\
\sum_{k=0}^{n} h_{n, k} z^{k}
\end{gathered}
$$

Machine

$$
\begin{gathered}
\mathrm{F}(\mathrm{~N}, \mathrm{~K}), \mathrm{G}(\mathrm{~N}, \mathrm{~K}) \\
\mathrm{H}(\mathbf{N}, \mathrm{~K})
\end{gathered}
$$

Z
HN(Z)

Machine calculations were done for $n=2(1) 40$. The data for $n=10$ and 15 are recorded in Table III, and we deduce that the coefficients $h_{n, k}$ are correct to at least 3 and 6 decimal places, respectively. For $n=20$ and 30 , the values of $h_{n, k}$ are correct to at least 8 and 13 decimal places, respectively. The quantity h_{1} is γ, the Euler or Euler-Mascheroni constant. Let $\gamma_{n}=h_{n, 1}$ be the approximation to γ. The values obtained for $\gamma_{n}, n=5(5) 35$ are given in Table IV. The value given there for $n=\infty$ is γ to 15 decimal places. Note that the difference of γ_{n} for $n=30$ and 35 from the true γ is no doubt due to round off. Thus on a heuristic basis, we have an alternative scheme to obtain the Taylor series coefficients and in particular Euler's constant.

TABLE IV
Approximations for Euler's Constant

n	γ_{n}		
5	0.57692	30769	23077
10	0.57722	04905	30812
15	0.57721	56570	84541
20	0.57721	56649	92483
25	0.57721	56649	00408
30	0.57721	56649	01537
35	0.57721	56649	01535
∞	0.57721	56649	01533

References

1. C. Lanczos, Trigonometric interpolation of empirical and analytic functions, J. Math. Phys. 17 (1938), 123-199.
2. C. Lanczos, "Applied Analysis," Prentice-Hall, Englewood Cliffs, N.J., 1956.
3. Y. L. Luke, "The Special Functions and Their Approximations," Vols. 1, 2, Academic Press, New York, 1969.
4. E. L. Ortiz, The tau method, SIAM J. Numer. Anal. 6 (1969), 480-492.
5. Y. L. Luke, "Mathematical Functions and Their Approximations," Academic Press, New York, 1975.
